
LiveJournal's Backend
A history of scaling

April 2005

Brad Fitzpatrick
brad@danga.com

Mark Smith
junior@danga.com

danga.com / livejournal.com / sixapart.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

LiveJournal Overview

● college hobby project, Apr 1999
● “blogging”, forums
● social-networking (friends)

– aggregator: “friend's page”
● April 2004

– 2.8 million accounts
● April 2005

– 6.8 million accounts
● thousands of hits/second
● why it's interesting to you...

– 100+ servers
– lots of MySQL

LiveJournal Backend: Today
Roughly.

User DB Cluster 1

uc1a uc1b

User DB Cluster 2

uc2a uc2b

User DB Cluster 3

uc3a uc3b

User DB Cluster 4

uc4a uc4b

User DB Cluster 5
uc5a uc5b

Memcached

mc4

mc3

mc2

mc12

...

mc1

mod_perl

web4

web3

web2

web50

...

web1

BIG-IP

bigip2
bigip1 perlbal (httpd/proxy)

proxy4

proxy3

proxy2

proxy5

proxy1

Global Database

slave1

master_a master_b

slave2 ... slave5

MogileFS Database

mog_a mog_b

Mogile Trackers

tracker2tracker1

Mogile Storage Nodes

...

sto2

sto8

sto1

net.

LiveJournal Backend: Today
Roughly.

User DB Cluster 1

uc1a uc1b

User DB Cluster 2

uc2a uc2b

User DB Cluster 3

uc3a uc3b

User DB Cluster 4

uc4a uc4b

User DB Cluster 5
uc5a uc5b

Memcached

mc4

mc3

mc2

mc12

...

mc1

mod_perl

web4

web3

web2

web50

...

web1

BIG-IP

bigip2
bigip1 perlbal (httpd/proxy)

proxy4

proxy3

proxy2

proxy5

proxy1

Global Database

slave1

master_a master_b

slave2 ... slave5

MogileFS Database

mog_a mog_b

Mogile Trackers

tracker2tracker1

Mogile Storage Nodes

...

sto2

sto8

sto1

net.

RELAX...RELAX...

The plan...

● Backend evolution
– work up to previous diagram

● MyISAM vs. InnoDB
– (rare situations to use MyISAM)

● Four ways to do MySQL clusters
– for high-availability and load balancing

● Caching
– memcached

● Web load balancing
● Perlbal, MogileFS
● Things to look out for...
● MySQL wishlist

Backend Evolution

● From 1 server to 100+....
– where it hurts
– how to fix

● Learn from this!
– don't repeat my mistakes
– can implement our design on a single server

One Server

● shared server
● dedicated server (still rented)

– still hurting, but could tune it
– learn Unix pretty quickly (first root)
– CGI to FastCGI

● Simple

One Server - Problems

● Site gets slow eventually.
– reach point where tuning doesn't help

● Need servers
– start “paid accounts”

● SPOF (Single Point of Failure):
– the box itself

Two Servers

● Paid account revenue buys:
– Kenny: 6U Dell web server
– Cartman: 6U Dell database

server
● bigger / extra disks

● Network simple
– 2 NICs each

● Cartman runs MySQL on
internal network

Two Servers - Problems

● Two single points of failure
● No hot or cold spares
● Site gets slow again.

– CPU-bound on web node
– need more web nodes...

Four Servers

● Buy two more web nodes (1U this time)
– Kyle, Stan

● Overview: 3 webs, 1 db
● Now we need to load-balance!

– Kept Kenny as gateway to outside world
– mod_backhand amongst 'em all

Four Servers - Problems

● Points of failure:
– database
– kenny (but could switch to another gateway

easily when needed, or used heartbeat, but we
didn't)

● nowadays: Whackamole
● Site gets slow...

– IO-bound
– need another database server ...
– ... how to use another database?

Five Servers
introducing MySQL replication

● We buy a new database server
● MySQL replication
● Writes to Cartman (master)
● Reads from both

Replication Implementation

● get_db_handle() : $dbh
– existing

● get_db_reader() : $dbr
– transition to this
– weighted selection

● permissions: slaves select-only
– mysql option for this now

● be prepared for replication lag
– easy to detect in MySQL 4.x
– user actions from $dbh, not $dbr

More Servers

● Site's fast for a while,
● Then slow
● More web servers,
● More database slaves,
● ...
● IO vs CPU fight
● BIG-IP load balancers

– cheap from usenet
– two, but not automatic

fail-over (no support
contract)

– LVS would work too

Chaos!

Where we're at....

mod_perl

web4

web3

web2

web12

...

web1

BIG-IP

bigip2
bigip1

mod_proxy

proxy3

proxy2

proxy1

Global Database

slave1 slave2 ... slave6

master

net.

Problems with Architecture
or,

“This don't scale...”

● DB master is SPOF
● Slaves upon slaves doesn't scale well...

– only spreads reads

200 writes/s 200 write/s

500 reads/s
250 reads/s

200 write/s

250 reads/s

w/ 1 server w/ 2 servers

Eventually...

● databases eventual consumed by writing

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

Spreading Writes

● Our database machines already did RAID
● We did backups
● So why put user data on 6+ slave machines?

 (~12+ disks)
– overkill redundancy
– wasting time writing everywhere

Introducing User Clusters

● Already had get_db_handle() vs
get_db_reader()

● Specialized handles:
● Partition dataset

– can't join. don't care. never join user data w/
other user data

● Each user assigned to a cluster number
● Each cluster has multiple machines

– writes self-contained in cluster (writing to 2-3
machines, not 6)

User Clusters

● almost resembles today's architecture

SELECT userid,
clusterid FROM
user WHERE
user='bob'

userid: 839
clusterid: 2

SELECT
FROM ...
WHERE
userid=839 ...

OMG i like
totally hate
my parents
they just
dont
understand me
and i h8 the
world omg lol
rofl *! :^-
^^;

add me as a
friend!!!

User Cluster Implementation

● per-user numberspaces
– can't use AUTO_INCREMENT

● user A has id 5 on cluster 1.
● user B has id 5 on cluster 2... can't move to cluster 1

– PRIMARY KEY (userid, users_postid)
● InnoDB clusters this. user moves fast. most space

freed in B-Tree when deleting from source.
● moving users around clusters

– have a read-only flag on users
– careful user mover tool
– user-moving harness

● job server that coordinates, distributed long-lived
user-mover clients who ask for tasks

– balancing disk I/O, disk space

User Cluster Implementation

● $u = LJ::load_user(“brad”)
– hits global cluster
– $u object contains its clusterid

● $dbcm = LJ::get_cluster_master($u)
– writes
– definitive reads

● $dbcr = LJ::get_cluster_reader($u)
– reads

DBI::Role – DB Load Balancing

● Our little library to give us DBI handles
– GPL; not packaged anywhere but our cvs

● Returns handles given a role name
– master (writes), slave (reads)
– cluster<n>{,slave,a,b}
– Can cache connections within a request or

forever
● Verifies connections from previous request
● Realtime balancing of DB nodes within a role

– web / CLI interfaces (not part of library)
– dynamic reweighting when node down

Where we're at...

mod_perl

web4

web3

web2

web25

...

web1

BIG-IP

bigip2
bigip1 mod_proxy

proxy4

proxy3

proxy2

proxy5

proxy1

net.

User DB Cluster 1

slave1 slave2

master

User DB Cluster2

slave1 slave2

master

Global Database

slave1 slave2 ... slave6

master

Points of Failure

● 1 x Global master
– lame

● n x User cluster masters
– n x lame.

● Slave reliance
– one dies, others reading too much

Solution? ...

User DB Cluster 1

slave1 slave2

master

User DB Cluster2

slave1 slave2

master

Global Database

slave1 slave2 ... slave6

master

Master-Master Clusters!

– two identical machines per cluster
● both “good” machines

– do all reads/writes to one at a time, both
replicate from each other

– intentionally only use half our DB hardware at a
time to be prepared for crashes

– easy maintenance by flipping the active in pair
– no points of failure

User DB Cluster 1

uc1a uc1b

User DB Cluster 2

uc2a uc2b

app

Master-Master Prereqs

● failover shouldn't break replication, be it:
– automatic (be prepared for flapping)
– by hand (probably have other problems)

● fun/tricky part is number allocation
– same number allocated on both pairs
– cross-replicate, explode.

● strategies
– odd/even numbering (a=odd, b=even)

● if numbering is public, users suspicious
– 3rd party: global database (our solution)
– ...

Cold Co-Master

● inactive machine in pair isn't getting reads
● Strategies

– switch at night, or
– sniff reads on active pair, replay to inactive guy
– ignore it

● not a big deal with InnoDB

7A 7B

Clients

Hot cache,
happy.

Cold cache,
sad.

Where we're at...

mod_perl

web4

web3

web2

web25

...

web1

BIG-IP

bigip2
bigip1 mod_proxy

proxy4

proxy3

proxy2

proxy5

proxy1

net.

User DB Cluster 1

slave1 slave2

master

Global Database

slave1 slave2 ... slave6

master

User DB Cluster 2

uc2a uc2b

MyISAM vs. InnoDB

MyISAM vs. InnoDB

● Use InnoDB.
– Really.
– Little bit more config work, but worth it:

● won't lose data
– (unless your disks are lying, see later...)

● fast as hell
● MyISAM for:

– logging
● we do our web access logs to it

– read-only static data
● plenty fast for reads

Logging to MySQL

● mod_perl logging handler
– INSERT DELAYED to mysql
– MyISAM: appends to table w/o holes don't block

● Apache's access logging disabled
– diskless web nodes
– error logs through syslog-ng

● Problems:
– too many connections to MySQL, too many

connects/second (local port exhaustion)
– had to switch to specialized daemon

● daemons keeps persistent conn to MySQL
● other solutions weren't fast enough

Four Clustering Strategies...

Master / Slave

● doesn't always scale
– reduces reads, not writes
– cluster eventually writing full

time
● good uses:

– read-centric applications
– snapshot machine for backups

● can be underpowered
– box for “slow queries”

● when specialized non-production
query required

– table scan
– non-optimal index available

200 writes/s

500 reads/s

w/ 1 server

200 write/s

250 reads/s

200 write/s

250 reads/s

w/ 2 servers

Downsides

● Database master is SPOF
● Reparenting slaves on master failure is tricky

– hang new master as slave off old master
● while in production, loop:

– slave stop all slaves
– compare replication positions
– if unequal, slave start, repeat.

● eventually it'll match
– if equal, change all slaves to be slaves of new master, stop old

master, change config of who's the master

Global Database

slave1 slave2 new master

master

Global Database

slave1 slave2 new master

master

Global Database

slave1 slave2

new master

master

Master / Master

● great for maintenance
– flipping active side for maintenance / backups

● great for peace of mind
– two separate copies

● Con: requires careful schema
– easiest to design for from beginning
– harder to tack on later

User DB Cluster 1

uc1a uc1b

MySQL Cluster

● “MySQL Cluster”: the product
● in-memory only

– good for small datasets
● need 2-4x RAM as your dataset
● perhaps your {userid,username} -> user row (w/

clusterid) table?
● new set of table quirks, restrictions
● was in development

– perhaps better now?
● Likely to kick ass in future:

– when not restricted to in-memory dataset.
● planned development, last I heard?

DRBD
Distributed Replicated Block Device

● Turn pair of InnoDB machines into a cluster
– looks like 1 box to outside world. floating IP.

● Linux block device driver
– sits atop another block device
– syncs w/ another machine's block device

● cross-over gigabit cable ideal. network is faster than
random writes on your disks usually.

● One machine at a time running fs / MySQL
● Heartbeat does:

– failure detection, moves virtual IP, mounts
filesystem, starts MySQL, InnoDB recovers

– MySQL 4.1 w/ binlog sync/flush options: good
● The cluster can be a master or slave as well.

Caching

Caching

● caching's key to performance
● can't hit the DB all the time

– MyISAM: r/w concurrency problems
– InnoDB: better; not perfect
– MySQL has to parse your queries all the time

● better with new MySQL binary protocol
● Where to cache?

– mod_perl caching (address space per apache child)
– shared memory (limited to single machine, same with

Java/C#/Mono)
– MySQL query cache: flushed per update, small max

size
– HEAP tables: fixed length rows, small max size

memcached
http://www.danga.com/memcached/

● our Open Source, distributed caching system
● run instances wherever there's free memory

– requests hashed out amongst them all
● no “master node”
● protocol simple and XML-free; clients for:

– perl, java, php, python, ruby, ...
● In use by:

– LiveJournal, Slashdot, Wikipedia, SourceForge,
HowardStern.com, (hundreds)....

● People speeding up their:
– websites, mail servers, ...

● very fast.

LiveJournal and memcached

● 12 unique hosts
– none dedicated

● 28 instances
● 30 GB of cached data
● 90-93% hit rate

What to Cache

● Everything?
● Start with stuff that's hot
● Look at your logs

– query log
– update log
– slow log

● Control MySQL logging at runtime
– can't

● help me bug them.
– sniff the queries!

● mysniff.pl (uses Net::Pcap and decodes mysql stuff)
● canonicalize and count

– or, name queries: SELECT /* name=foo */

Caching Disadvantages

● extra code
– updating your cache
– perhaps you can hide it all?

● clean object setting/accessor API?
● but don't cache (DB query) -> (result set)

– want finer granularity
● more stuff to admin

– but only one real option: memory to use

Web Load Balancing

Web Load Balancing

● BIG-IP [mostly] packet-level
– doesn't buffer HTTP responses
– need to spoon-feed clients

● BIG-IP and others can't adjust server
weighting quick enough
– DB apps have widly varying response times: few

ms to multiple seconds
● Tried a dozen reverse proxies

– none did what we wanted or were fast enough
● Wrote Perlbal

– fast, smart, manageable HTTP web server/proxy
– can do internal redirects

Perlbal

Perlbal

● Perl
● uses epoll, kqueue
● single threaded, async event-based
● console / HTTP remote management

– live config changes
● handles dead nodes, balancing
● multiple modes

– static webserver
– reverse proxy
– plug-ins (Javascript message bus.....)
– ...

● plug-ins
– GIF/PNG altering,

Perlbal: Persistent Connections

● persistent connections
– perlbal to backends (mod_perls)

● know exactly when a connection is ready for a new
request

– no complex load balancing logic: just use whatever's free.
beats managing “weighted round robin” hell.

– clients persistent; not tied to backend
● verifies new connections

– connects often fast, but talking to kernel, not
apache (listen queue)

– send OPTIONs request to see if apache is there
● multiple queues

– free vs. paid user queues

Perlbal: cooperative large file
serving

● large file serving w/ mod_perl bad...
– mod_perl has better things to do than spoon-

feed clients bytes
● internal redirects

– mod_perl can pass off serving a big file to
Perlbal

● either from disk, or from other URL(s)
– client sees no HTTP redirect
– “Friends-only” images

● one, clean URL
● mod_perl does auth, and is done.
● perlbal serves.

Internal redirect picture

MogileFS

MogileFS: distributed filesystem

● alternatives at time were either:
– closed, expensive, in development, complicated,

scary/impossible when it came to data recovery
● MogileFS main ideas:

– files belong to classes
● classes: minimum replica counts

– tracks what disks files are on
● set disk's state (up, temp_down, dead) and host

– keep replicas on devices on different hosts
● Screw RAID! (for this, for databases it's good.)

– multiple tracker databases
● all share same MySQL database cluster

– big, cheap disks
● dumb storage nodes w/ 12, 16 disks, no RAID

MogileFS components

● clients
● trackers
● mysql database cluster
● storage nodes

MogileFS: Clients

● tiny text-based protocol
● currently only Perl

– porting to $LANG would be trivial
● doesn't do database access

MogileFS: Tracker

● interface between client protocol and cluster
of MySQL machines

● also does automatic file replication, deleting,
etc.

MySQL database

● master-slave or, recommended: MySQL on
DRBD

Storage nodes

● NFS or HTTP transport
– [Linux] NFS incredibly problematic

● HTTP transport is Perlbal with PUT &
DELETE enabled

● Stores blobs on filesystem, not in database:
– otherwise can't sendfile() on them
– would require lots of user/kernel copies

Large
file GET
request

Large
file GET
request

Auth: complex,
but quick

Spoonfeeding:
slow, but event-
based

Things to watch out for...

MyISAM

● sucks at concurrency
– reads and writes at same time: can't

● except appends
● loses data in unclean shutdown / powerloss

– requires slow myisamchk / REPAIR TABLE
– index corruption more often than I'd like

● InnoDB: checksums itself
● Solution:

– use InnoDB tables

Lying Storage Components

● disks and RAID cards often lie
– cheating on benchmarks?
– say they've synced, but haven't

● Not InnoDB's fault
– OS told it data was on disk
– OS not at fault... RAID card told it data was on disk

● “Write caching”
– RAID cards can be battery-backed, and then write-caching is

generally (not always) okay
– SCSI disks often come with write-cache enabled

● they think they can get writes out in time
● they can't.

● disable write-cache. RAID card, OS, database should do
it. not the disk

● Solution: test.
– spew-client.pl / spew-server.pl

Persistent Connection Woes

● connections == threads == memory
– My pet peeve:

● want connection/thread distinction in MySQL!
● or lighter threads w/ max-runnable-threads tunable

● max threads
– limit max memory

● with user clusters:
– Do you need Bob's DB handles alive while you

process Alice's request?
● not if DB handles are in short supply!

● Major wins by disabling persistent conns
– still use persistent memcached conns
– don't connect to DB often w/ memcached

In summary...

Software Overview

● Linux 2.6
● Debian sarge
● MySQL

– 4.0, 4.1
– InnoDB, some MyISAM in places

● BIG-IPs
– new fancy ones, w/ auto fail-over, anti-DoS
– L7 rules, including TCL. incredibly flexible

● mod_perl
● Our stuff

– memcached
– Perlbal
– MogileFS

Questions?

User DB Cluster 1

uc1a uc1b

User DB Cluster 2

uc2a uc2b

User DB Cluster 3

uc3a uc3b

User DB Cluster 4

uc4a uc4b

User DB Cluster 5
uc5a uc5b

Memcached

mc4

mc3

mc2

mc12

...

mc1

mod_perl

web4

web3

web2

web50

...

web1

BIG-IP

bigip2
bigip1 perlbal (httpd/proxy)

proxy4

proxy3

proxy2

proxy5

proxy1

Global Database

slave1

master_a master_b

slave2 ... slave5

MogileFS Database

mog_a mog_b

Mogile Trackers

tracker2tracker1

Mogile Storage Nodes

...

sto2

sto8

sto1

net.

Questions?

Thank you!

Questions to...
brad@danga.com

junior@danga.com

Slides linked off:
http://www.danga.com/words/

